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       This Report is dedicated to the memory of our uncle, Eugene Roffman, the first great scientist 

in our family. When he was 92 years old, on the last day that we saw him alive, he gave us the key 

to the door hiding one of the great mysteries of the universe. He then asked us to unlock it and 

reveal to the world what would be found. This father and son work is the fruit of our twelve-year 

journey to fulfill his request. May it forever distract humanity from the petty squabbles that 

threaten to destroy our species.  
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BASIC REPORT FOR MARS CORRECT:  

CRITIQUE OF ALL NASA MARS WEATHER DATA  

 

ABSTRACT:  We present evidence that NASA is seriously understating Martian air pressure. 

Our 10-year study critiques 2,676 Sols (~7.53 terrestrial years, 4 Martian years) of highly 

problematic MSL Rover Environmental Monitoring Station (REMS) weather data, and offers 

an in depth audit of over 8,311 hourly Viking 1 and 2 weather reports. We discuss analysis of 

technical papers, NASA documents, and personal interviews of transducer designers. We 

troubleshoot pressures based on radio occultation/spectroscopy, and the previously accepted 

small pressure ranges that could be measured by Viking 1 and 2 (18 mbar), Pathfinder and 

Phoenix (12 mbar), and MSL (11.5 mbar ï altered to 14 mbar in 2017). For MSL there were 

several pressures published from August 30 to September 5, 2012 that were from 737 mbar to 

747 mbar ï two orders of magnitude high ï only to be retracted. We challenged many pressures 

and NASA revised them down. However there are two pressure sensors ranges listed on a 

CAD for Mars Pathfinder . We long thought the CAD listed two different sensors, but based 

on specifications of a new Tavis sensor for InSight that is like that on PathFinder, it appears 

that the transducer could toggle between two pressures ranges: 0-0.174 PSIA/12 mbar (Tavis 

Dash 2) and 0-15 PSIA/1,034 mbar (Tavis Dash 1). Further, for the MSL according to an 

Abstract to the American Geophysical Union for the Fall 2012 meeting, The Finnish 

Meteorological Institute (FMI) states of their MSL (and Phoenix) Vaisala transducers, ñThe 

pressure device measurement range is 0 ï 1025 hPa in temperature range of -45°C - +55°C (-

45°C is much warmer than MSL night temperatures), but its calibration is optimized for the 

Martian pressure range of 4 ï 12 hPa.ò So while we first thought that of the first five landers 

that had meteorological suites, none could measure Earth-like pressures, in fact, three landers 

were actually equipped to get the job. Further, all original 19 low UV values were removed 

when we asked about them, although they eventually restored 12 of them. REMS always-sunny 

opacity reports were contradicted by Mars Reconnaissance Orbiter photos. Why REMS Team 

data was so wrong is a matter of speculation, but we demonstrate that their weather data was 

regularly revised after they studied online critiques in working versions of this report. REMS 

even labelled all dust 2018 Global Dust Storm weather as sunny, although they did list the UV 

values then as all low.  

 

Vikings and MSL showed consistent timing of daily pressure spikes which we link to how gas 

pressure in a sealed container would vary with Absolute temperature, to heating by 

radioisotope thermoelectric generators (RTGs), and to dust clots at air access tubes and dust 

filters. Pathfinder, Phoenix and MSL wind measurements failed. Phoenix and MSL pressure 

transducer design problems included confusion about dust filter location, and lack of 

information about nearby heat sources due to International Traffic and Arms Regulations 

(ITAR). NASA Ames could not replicate dust devils at 10 mbar. Rapidly filled MER Spirit 

tracks required wind speeds of 80 mph at the assumed low pressures. These winds were never 

recorded on Mars. Nor could NASA explain drifting Barchan sand dunes. Based on the above 

and dust devils on Arsia Mons to altitudes of 17 km above areoid (Martian equivalent of sea 

level), spiral storms with 10 km eye-walls above Arsia Mons and similar storms above 

Olympus Mons (over 21 km high), dust storm opacity at MER Opportunity blacking out the 

sun, snow that descends 1 to 2 km in only 5 or 10 minutes, excessive aero braking, liquid water 

running on the surface in numerous locations at Recurring Slope Lineae (RSL) and stratus 

clouds 13 km above areoid, we argue for an average pressure at areoid of ~511 mbar rather 

than the accepted 6.1 mbar. This pressure grows to 1,050 mbar in the Hellas Basin. 

http://marscorrect.com/images/correct_10b.png
http://marscorrect.com/images/correct_10b.png
https://pressure-transducers.taviscorp.com/item/all-categories/ressure-transducers-for-interplanetary-exploration/10484
http://abstractsearch.agu.org/meetings/2012/FM/P21G-06.html
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1. INTRODUCTION  

Mars has long fascinated humanity and often 

been seen as a possible safe harbor for life. In 

July, 1964 that hope was dealt a crushing 

blow by Mariner 4. Images and data obtained 

from no closer than 9,846 km showed a 

heavily cratered, cold, and dead world. Air 

pressures posted on a NASA site were 

estimated at 4.1 to 7 mbar, 

(http://nssdc.gsfc.nasa.gov/planetary/mars/m

ariner.html)1 although A. J. Kliore (1974) of 

JPL listed the Mariner 4-derived pressure 

range as 4.5 to 9 mbar2. Mariner 4 saw 

daytime temperatures of -100o C (not seen on 

landers), with no magnetic field. Mariners 6, 

7 and 9 got closer but still did not give us a 

picture that was much friendlier. Mariner 

estimates for pressure, based on radio 

occultation, spanned a range of 1 or 2.8 to 

10.3 mbar.3 All pressure estimates were close 

to a vacuum when compared to average 

pressure on Earth (1,013.25 mbar). However 

from a distance of 1,650 km, after a dust 

storm that obscured everything upon its 

arrival in orbit, Mariner 9 could see evidence 

of wind and water erosion, fog, and weather 

fronts.4 When Vikings 1 and 2 landed, we 

learned of a high frequency of dust devils on 

Mars too. Phoenix witnessed snow falling.5 

The HIRISE and MER Spirit showed 

unexpected bedform (sand dune and ripple) 

movement.6 

       All landers agreed that pressure at their 

respective locations was somewhere between 

6.5 and 11.49 mbar (MSL Sol 370 at solar 

longitude [Ls] 9) or even 12 mbar (Sol 

1,161), but these low pressures make it very 

hard to explain the weather plainly seen. This 

is particularly true of dust devils and blowing 

sand. NASA/JPL credibility suffered a major 

blow when, after 9 months of publishing 

constant winds of 2 m/s from the east, one of 

their partners, Ashima research, met our 

demands to change all wind reports to Not 

Available (N/A) and to alter all daily 

published sunrise/sunset times from 6 am and 

5 pm between August 2012 and May 2013 

(except for October 2, 2012) to match our 

calculated times at 

http://davidaroffman.com/photo4_26.html 

(within one minute)7 that reflected seasonal 

variations to be expected at 4.59° South on a 

planet with a 25.19° axial tilt. These 

alterations were two minor battles won in our 

dispute with NASA/JPL. They were 

accompanied by an e-mailed thank you from 

JPLôs public relations director, Guy Webster, 

but they do not constitute victory for our side. 

That comes only when NASA also reverses 

course on ridiculously low pressure claims 

that we believe our report can refute. 

       There is an issue of how to best conduct 

this challenge to the Establishment and it is 

important that we clarify our concerns up 

front. Before Guy Webster, Ashima 

Research, and the MSL REMS Team also 

began to change their reports to match the 

corrections that we detailed on our web site 

and in this report, Webster insisted that I 

submit this full report (which is in fact 

updated approximately every month now for 

ten years), to Icarus. 

       The full report is well over 1,100 pages 

in length. As alluded to above, it is a living 

document that is constantly updated and 

expanded. However this was not the problem 

with formal publication at the venue he 

suggests. The problem is that our report goes 

beyond mere data analysis to delve into the 

nature of the specific people who have 

published what we feel is clearly erroneous 

data. We have gotten to know many of them 

quite well. The staff of Icarus is, in large part, 

composed of JPL personnel, with agendas 

and personal reputations at stake. In the past 

we wrote that to submit this report to them 

alone is to fight our war on their turf. 

http://nssdc.gsfc.nasa.gov/planetary/mars/mariner.html
http://nssdc.gsfc.nasa.gov/planetary/mars/mariner.html
http://davidaroffman.com/photo4_26.html
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However, after an attempt to hand deliver a 

copy of the report to Ames, we received a 

request from the Journal of Astrobiology to 

review a paper entitled Evidence of Life on 

Mars by R. Gabriel Joseph et al. After the 

Journal published our own paper entitled 

Meteorological Implications of Evidence of 

Life on Mars (Roffman 2019) with links to 

this Report, we have entered a new era. 

However some of our words were altered to 

conform to NASA policy and there is an 

obvious split within NASA as to how much 

to tell the public. Having set the stage for our 

continuing struggle with NASA, we fire the 

opening salvoes with an in depth look at the 

issue of Martian dust devils. 

1.1 Comparison of Martian and Terrestrial 

Dust Devils   

 

Dust devils on Earth and Mars are 

similar with respect to geographic formation 

regions, seasonal occurrences, electrical 

properties, size, shape, diurnal formation 

rate, lifetime and frequency of occurrence, 

wind speed, core temperature excursions, and 

dust particle size.9  The only significant 

differences lie in measured absolute and   

relative pressure excursions in the cores of 

Martian and terrestrial dust devils. Clogged 

dust filters and pressure equalization ports on 

landers may have diminished accuracy of 

dust devil pressure change measurements 

(see sections 2.1 through 2.6 below). 

 

1.1.1 Geographic occurrences and the 

Greenhouse and Thermophoresis Effect  

 

Thousands of dust devils per week 

occur in the Peruvian Andes near the 

Subancaya volcano (Metzger, 2001) which is 

5,900 meters high.10 Dust devils are also seen 

in abundance on a Martian volcano, Arsia 

Mons.  But the base altitude of some dust 

devils there has been about 17,000 meters.11 

Such an altitude on Mars supposedly would 

have about 1.2 mbar pressure, compared to 

about 478 mbar at Subancaya on Earth.  Reis 

et al. state that 28 active dust devils were 

reported in their study region for Arsia Mons, 

with 11 of them at altitudes greater than 16 

km, and most inside the caldera (see Figure 

1).  They donôt fully understand how particles 

that are a few microns in size can be lifted 

there, and state that 1 mbar ñrequires wind 

speeds 2-3 times higher than at the Mars 

mean elevation for particle entanglement.ò  

 

 
 

Figure 1 ï Arsia Mons Dust Devils (reproduced 

from Reis et al., 2009) 

 

Reis et al. (2009) suggest a 

greenhouse-thermophoretic (GT) effect that 

they believe explains ~1 mbar dust lifting at 

Arsia Mons.11 Their article states that 

ñLaboratory and microgravity experiments 

show that the light flux needed for lift to 

occur is in the same range as that of solar 

insolation available on Mars.ò They concede 

that high altitude dust devils do not follow the 

season of maximum insolation, but indicate 

that the GT-effect would be strongest around 
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pressures of 1 mbar. However, if anything we 

would expect such dust lifted at high altitude 

to just drift away.  The GT effect does not 

explain the structure of these events at high 

altitude, or why the dust rotates in columns 

that match dust devils produced at lower 

altitudes.  Further, Figure 1 shows that dust 

devils form at successively lower levels (i.e., 

higher pressures) as altitudes decline from 17 

km to about 7 km, so there is nothing unique 

about reaching the theorized ~1 mbar-level at 

the top of Arsia Mons.   
 

1.1.2 Seasonal Occurrences and Electrical 

Properties.   

 

Dust devils usually occur in the 

regional summer on Earth. On Mars their 

tracks are most often seen during regional 

spring and summer. 12 There are indications 

that there may be high voltage electric fields 

associated with Martian dust devils. Such 

fields would mirror terrestrial dust devils, 

where estimates are as large as 0.8 MV for 

one such event.13 

 

1.1.3. Size and Shape  

 

About 8% of terrestrial dust devils 

exceed 300 m in height.  Bell (1967) reports 

some seen from the air that are 2,500 m 

high.14 Mars orbiters have shown dust devils 

there often are a few kilometers high and 

hundreds of meters in diameter, outdoing the 

larger terrestrial events. Martian dust devils 

can be 50 times as wide and 10 times as high 

as terrestrial ones.15 Still, a NASA Spirit 

press release (8/19/2,004) stated, ñMartian 

and terrestrial dust devils are similar in 

morphology and can be extremely 

common.ò   

 

1.1.4. Diurnal Formation Times 

 

About 80 convective vortices were 

recorded by Pathfinder.  Most occurred 

between 1200 and 1300 Local True Solar 

Time.16 On Earth noon is about the peak time.  

 

1.1.5 Wind Speeds 

 

Stanzel et al. assert that dust devil 

velocities were directly measured by Mars 

Express Orbiter between January 2004 and 

July 2006.17 They had a range of speeds from 

1 m/s (2.2 mph) to 59 m/s (132 mph).  Even 

on the high end, we do not see the 70 m/s 

required to lift dust by a NASA Ames 

apparatus discussed below in section 1.2. 

   

1.1.6 Core Temperature Excursions.  

 

Balme and Greeley18 state, ñPositive 

temperature excursions in vortices measured 

by Viking and MPF landers had maximum 

values of 5-6 K. These values are similar to 

terrestrial measurements.ò  However they 

note low sampling rates on Mars, 

ñmeasurements with an order of magnitude 

higher sampling rate show temperature 

excursions as great as 20ÜC.ò  Ellehoj et al.19 

indicate that core excursions for Martian dust 

devils can be up to 10 K (ºC).  

 

1.1.7 Dust Particle Size ï The Problem of 

Martian Dust <2 Microns and Wind Speeds 

 

Balme and Greeley18 also state, ñThe 

Martian atmosphere is thinner than 

Earthôsé so much higher wind speeds 

are required to pick up sand or dust on 

Mars.  Wind tunnel studies have shown 

that, like Earth, particles with diameter 

80-100 ɛm (fine sand) are the easiest to 

move, having the lowest static threshold 

friction velocity, and that larger and 

smaller particles require stronger winds 

to entrain them into the flow.  However, 

much of Marsô atmospheric dust load is 

very small, and the boundary layer wind 

speeds required to entrain such fine 

material are in excess of those measured 

http://www.marstoday.com/viewpr.html?pid=14063
http://www.marstoday.com/viewpr.html?pid=14063


ROFFMAN & ROFFMAN   Mars Correct: Critique of All NASA Mars Weather Data  

 

5 

 

at the surface (Magalhaes et al., 

1999).20 Nevertheless, fine dust is 

somehow being injected into the 

atmosphere to supporté haze and é 

localé and globalé dust storms.ò 

 

The problem of dust particle size is 

more serious than indicated above.  Optimum 

particle size for direct lifting by the wind 

(with the lowest threshold velocity) is around 

90 ɛm. This requires a wind at 5 meters 

altitude to be around 30-40 m/s. For smaller 

particles like the 1 ɛm size dust typically 

suspended in the air over Mars, the threshold 

velocity is extremely high, requiring 

enormous wind speeds (>500 m/s) at 5 m 

altitude which would never occur.  It is thus 

argued that saltation must be crucial to the 

lifting of very small particles into the air 

(Read and Lewis, 2004, 190).9 

 

Saltation occurs when large particles 

are briefly lifted into air by surface winds, 

and then soon fall out by sedimentation.21 On 

impact with the surface, they may dislodge 

smaller particles and lift them into the air.  

Read and Lewis indicate that the velocity that 

fine sand (~ 100 ɛm) would have on impact 

is only about 50 to 80 cm per second (1.8 to 

2.88 kph).9 

 

1.1.8. Core Pressure Excursions   

 

Roy E. Wyatt (1954) of the Weather 

Bureau Regional Office in Salt Lake City, 

Utah reported that a small ~15 m high, 15 to 

18 m wide dust devil had its center pass 

within 2.4 to 3 m of a microbarograph on 

August 12, 1953 in St. George, Utah (Figure 

2) at an altitude of ~899 m above sea level.22 

A drop from 913.644 to 912.289 mbar was 

recorded.  This 1.355 mbar drop in pressure 

equals 0.148%.  

 

 
Figure 2 ï Dust devil pressure drop in Salt Lake City, 

Utah where a small, ~50-foot high, ~60 foot wide 

dust devil had its center pass 8-10 feet from a 

microbarograph on August 12, 1953 in St. George, 

Utah. 

 

Balme and Greeley (2006) report that 

Pathfinder ñidentified 79 possible convective 

vortices from pressure data.ò12 Recorded 

pressure drops were from ~0.075% to 

~0.75%.   Figure 3 shows dust devil events 

for Pathfinder and Phoenix. If we examine 

the pressure drop seen by Phoenix from 8.425 

to 8.422 mbar, that 0.003 mbar pressure drop 

is only about 0.036%. The Pathfinder event 

shows a drop in pressure from about 6.735 to 

6.705 mbar (0.03 mbar). That is about a 

0.445% drop. While the percent pressure 

drop is larger on the Pathfinder event than the 

Utah event, it was smaller for the Phoenix 

event. So absolute and percent pressure drops 

on Mars are producing almost the exact same 

storms, indeed often bigger storms, than we 

see on Earth. It might be argued that pressure 

is smaller on Mars; but so too is kinetic 

energy. Clearly, as we approach a vacuum, if 

we are going to see weather events based on 

pressure differences, there should be at least 

the same size percent pressure drops to drive 

them, not smaller ones.  However, most 

telling is that while the percent drops on 

Martian dust devils appear to overlap their 

terrestrial cousins; for hundreds of days 

Viking 1 and 2 almost always saw much 

larger pressure increases each sol about 7:30 



ROFFMAN & ROFFMAN   Mars Correct: Critique of All NASA Mars Weather Data  

 

6 

 

AM local time with increases up to 0.62 mbar 

from the previous hour at that time.  

 

As will be discussed later in this 

report, after Mars Science Laboratory data 

was scrubbed by JPL, there was not during 

one full Martian year of weather data (669 

Martian sols) even one sol where the average 

pressure from one solôs average pressure 

differed from the next by more than 0.09 

mbar (MSL Sol 543 saw this drop from MSL 

Sol 542), although before they scrubbed the 

data there was an increase of pressure from 

MSL Sol 369 to MSL Sol 370 of 2.84 mbar 

(from 8.65 mbar to 11.49 mbar), and a drop 

on MSL 371 of the same 2.84 mbar back to 

8.65 mbar. This report discusses MSL 370 in 

more detail later, but note that after we raised 

the issue of this pressure to Guy Webster at 

JPL, JPL altered the pressure reported for Sol 

370 to 8.65 mbar, thus indicating no pressure 

change at all from MSL Sol 369 through Sol 

371.  

 

 
Figure 3 ï Pressure drops at Phoenix and Pathfinder 

during dust devils (adapted from Elohoj et al. 2009 & 

http://nssdc.gsfc.nasa.gov.planetary/marspath/dustde

vil.html).  

 
 

       Figure 4 offers evidence that internal 

events on the Vikings were having a much 

greater impact on pressure readings than 

dramatic events like dust devils. Pressure 

increases at the 0.26 to 0.3 time-bins were 

comparable to pressure drops associated with 

global dust storms. An increase of 0.62 mbar 

in about 59 minutes that makes up one time-

bin equates to a pressure rise 13 times greater 

than the largest (0.477 mbar) pressure fall 

shown for all 79 Pathfinder dust devil events, 

and about 21 times greater than the largest 

(.0289 mbar) pressure drop seen for a 

Phoenix dust devil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://nssdc.gsfc.nasa.gov.planetary/marspath/dustdevil.html
http://nssdc.gsfc.nasa.gov.planetary/marspath/dustdevil.html
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Figure 4 ï Relative magnitude of 0.62 mbar increase in pressure for Viking 1 at its sol 332.3 and pressure drops for 79 

convective vortices/dust devils at Mars pathfinder over its 83 sols. Source: Murphy, J. and Nelli, S., Mars Pathfinder 

Convective Vortices: Frequency of Occurrence (2002) http://tide.gsfc.nasa.gov/studies/Chen/proposals/IES/2002GL015214.pdf 

 

http://tide.gsfc.nasa.gov/studies/Chen/proposals/IES/2002GL015214.pdf
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1.2. NASA Ames Test of Martian Pressures 

and Dust Devils  

 

An effort was made at the Ames 

facility to simulate Martian dust devils at a 

pressure of 10 mbar.  NASA (2005 article)23 

states that, ñThe high-pressure air draws thin 

air through the tunnel like a vacuum cleaner 

sucks air. Scientists also compare this process 

to a person sucking water through a straw. 

The resulting simulated Mars wind moves at 

about 230 feet per second (70 m/s).ò  Actual 

recorded dust devil wind speeds seen on Mars 

by Pathfinder and Phoenix were about 6 

m/s.24 Seventy m/s is 252 kilometers per 

hour, nearly the strength of a category 5 

hurricane.  NASA Ames was unable to 

replicate a dust devil with a fan spinning at 

the 10 mbar pressure level. They state that 

ñthe simulated (10 mbar) Martian atmosphere 

in the wind tunnel is so tenuous that a fan 

would have to spin at too high a speed to blow 

thin wind through the test section.ò As such, 

it becomes harder to accept that dust devils 

can occur in such low pressures. The problem 

becomes more severe when we see Martian 

dust devils operating at even lower speeds, or 

on Arsia Mons where pressure is ~1 mbar 

(see Table 1).  

 

       Findings (Bridges, et al., 2012)25 based 

on HiRISE and MER Spirit photos of Martian 

bedforms (moving dunes and sand ripples) 

are also at odds with surface meteorological 

measurements and climate models which 

indicate that 129 kph winds (termed 

threshold winds) capable of moving sand are 

infrequent in the ~6 mbar atmosphere 

(Arvidson et al., 198326; Almeida et al., 

200827). In fact, the required winds were 

never seen in 8,311 hourly pressures checked 

for Vikings 1 and 2. This will be discussed in 

greater detail later in Section 7.2. 

 

 
 

TABLE 1 ï Pressure at various elevations on Mars based on a scale height of 10.8 and a pressure at Mars 

Areoid of 6.1 mbar.  Atmospheric pressure decreases exponentially with altitude. In determining pressure 

for Earth, the formula for scale height is p = p0e-(h/h0) where p = atmospheric pressure (measured in bars on 

Earth), h = height (altitude), P0 = pressure at height h = 0 (surface pressure), and H0 = scale height. 
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2. OVERVIEW OF 

INSTRUMENTATION PROBLEMS.   

 

Differences between terrestrial and 

Martian dust devil pressure excursion 

measurements hinge largely on the accuracy 

of the 354-gram Tavis magnetic reluctance 

diaphragm used for Vikings in 1976, and 

Pathfinder in 1996; and a 26-gram Vaisala 

Barocap ® sensor developed in 2008 by the 

Finnish Meteorological Institute (FMI) for 

the Phoenix and MSL Curiosity. Did any 

probes sent to Mars ever have the ability to 

measure pressures near those associated with 

terrestrial dust devils?  The initial answer 

appeared to be ñno.ò However, as will be 

discussed later in conjunction with Figure 

10B, Tavis CAD 10484 indicates that 

Pathfinder had a second pressure range of 0 

to 15 PSIA. This means it could measure up 

to 1,034 mbar. There is a real need for 

clarification here. 

 

Tavis sensor pressure ranges for 

Viking had limits of about 18 mbar. There 

was a question of whether or not the limit was 

closer to 25 mbar due to Tavis CAD no. 

10014 (see Figure 10A) that indicates a limit 

of 24.82 mbar (0.36 PSIA). However, 

Professor James E. Tillman, director of the 

Viking Computer Facility, in a personal 

communication dated 27 May 2010, insisted 

that the limit was 18 mbar. This figure is 

understood to be what NASA espouses now. 

The 18 mbar Viking figure is backed by 

NASA report TM X-74020 by Michael 

Mitchell dated March 1977.29 It states: 

 

Two variable reluctance type pressure 

sensors with a full range of 1.79 x 103 

N/M2 (18 mb) were evaluated to determine 

their performance characteristics related 

to Viking Mission environment levels. 

Twelve static calibrations were performed 

throughout the evaluation over the full 

range of the sensors using two point 

contact manometer standards. From the 

beginning of the evaluation to the end of 

the evaluation, the zero shift in the two 

sensors was within 0.5 percent and the 

sensitivity shift was 0.05 percent.  The 

maximum thermal zero coefficient 

exhibited by the sensors was 0.032% over 

the temperature range of -28.89°C to 

71.11°C. 

 

 It gets a lot colder than -28.89°C on 

Mars, but Professor Tillman insisted that 

ñThe pressure sensors were located inside the 

lander body and heated by RTG 

(radioisotope thermoelectric generator) 

units. They were not exposed to ambient 

Martian temperatures.ò  This report will 

question whether rapid ingestion of dust 

during the landing process also prevented 

transducers from ever correctly measuring 

ambient Martian pressures. 

 

Figure 5A is the very first picture ever 

transmitted from the surface of Mars to Earth. 

It was taken between 25 seconds and 4 

minutes after the landing and it makes clear 

that dust was an immediate issue when the 

landing occurred. Figure 5A also shows that 

rocks were also kicked up and landed on at 

least one footpad.  

 

Figure 5B shows that again with the 

MSL landing rocks kicked up on landing fell 

on the lander deck. As is shown later in this 

paper on Figure 50E, dust covered a camera 

lens cover on the MSL too. So itôs a safe bet 

that dust could have quickly made its way 

into the MSLôs Vaisala pressure transducerôs 

dust filter. 
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Figure 5A: Viking 1 footpad with dust, sand and rocks on it right after landing.  Effects 

of dust cloud stirred up are to the left. For a better view, see the NASA image at 

http://upload.wikimedia.org/wikipedia/commons/a/ae/Mars_Viking_12a001.png 

 

 

 
 

Figure 5B:  During the landing, many rocks were again kicked up and landed on the deck of 

the MSL Curiosity. The issue, however, is whether any dust was ingested by the pressure 

transducer. Source: http://astroengine.com/2012/08/08/sol-2-rocky-debris-on-curiositys-deck-

hints-of-thunderous-landing/ 

  

http://upload.wikimedia.org/wikipedia/commons/a/ae/Mars_Viking_12a001.png
http://astroengine.com/2012/08/08/sol-2-rocky-debris-on-curiositys-deck-hints-of-thunderous-landing/
http://astroengine.com/2012/08/08/sol-2-rocky-debris-on-curiositys-deck-hints-of-thunderous-landing/
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2.1 Vikings, MSL, and Gay-Lussacôs Law. 

 

RTGs may be at the root of problems 

with Viking and MSL pressure readings 

which appear to vary inversely with outside 

temperatures.  That is, when it gets colder 

outside and RTGs need to warm the inside of 

the landers, the pressure recorded inside goes 

up. Temperature and pressure variations seen 

for Viking 1 Year 1 almost exactly match 

what would be expected in accordance with 

Gay-Lussacôs Pressure Law (see Figures 6 

through 9C). To counteract a minimum Year 

1 temperature of 177.19K seen, and to raise 

internal temperatures to the maximum Year 1 

external temperature seen (255.77 K), air 

caught behind a dust clog would experience a 

pressure rise.  If Viking 1 sucked in enough 

dust and sand on landing to clog, but not 

enough to equalize the internal pressure with 

the air pressure outside, then whatever Year 

1 minimum pressure seen inside the lander at 

the Tavis pressure transducer (6.51 mbar) 

would increase in pressure in accordance 

with Gay-Lussacôs Law.  As is shown on 

Figure 6, when the above two temperatures 

and 6.51 mbar are entered into the calculator, 

the expected pressure is shown to be 9.397 

mbar.  The actual maximum pressure 

recorded by Viking 1 was 9.57 mbar.  That is 

a 98.19% agreement with the idea that the air 

access tube for the sensor was clogged.  For 

Viking 2, the minimum and maximum 

temperatures were 152.14 K and 245.74 K.  

The minimum pressure found was 7.29 mbar. 

The maximum predicted pressure was 11.775 

mbar. The maximum pressure recorded by 

VL-2 was 10.72 mbar, which is   91.04% of 

the predicted value. See Figure 6. 

 

The data points on Figure 6 are meant 

to get some sense of whether the pressure 

limits seen were roughly in line with 

expectations based on heat applied to a sealed 

space (behind the dust clots).  They were, but 

obviously more so in Viking 1ôs first year.  

By Year 2 overall predictions were off by 9 

or 10 percent, but the calculations are less 

certain because of many incidents involving 

stuck pressure readings, sometimes for days 

on end. Annex C of this report supports this 

allegation, but Annex D also highlights stuck 

pressure readings for Viking 1.  The old 

clich® ñGarbage in Garbage outò sums up the 

problem.  Temperature data seemed credible 

for the Vikings (except when reported as 

Absolute Zero). However temperatures (in 

particular, ground temperatures) were 

problematic for MSL as is detailed in Section 

14.1 of this report. We assert that pressure 

data was not credible for any lander.  

 

When comparing maximum air 

temperatures seen at MSL and Viking 1, we 

show in Annex M to this report that the 

highest air temperature seen after JPL revised 

it year 1 data was 4º C (274.15K). MSL sits 

at 4.59 º South on Mars at an altitude of 4,400 

meters below areoid. Viking 1 was also in the 

tropics at 22 º North. However VL-1 was at 

an altitude of 3,627 meters below altitude. 

R.M. Haberle111 at NASA Ames claims that 

the adiabatic lapse rate for Mars is about 2.5K 

km-1. Using that rate we would expect the 

maximum temperature at VL-1 to be about 

1.9325 K lower than at MSL however the 

maximum temperature at VL-1 was only 

255.77K, while the maximum (revised) 

temperature for MSL Year 1(on MSL Sol 

227/March 2, 2013) was 274.15K, a full 

18.38 K warmer than at VL-1. Further, before 

JPL revised its MSL temperatures it indicated 

a maximum air temperature at MSL of 8º C 

(281.15 K) on MSL Sol 102 (November 18, 

2012) but they later altered this temperature 

to -3º C (270.15 K). The high for MSL Year 

2 was 11º C (284.15K) on Sol 760. So, it 

would appear that there is room to question 

the accuracy and consistency of air 

temperature sensors on these two missions. 
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Figure 6: Pressure calculator with entering arguments 

based on VL- 1 and 2 Year 1 results. Prediction is 

98.19% in agreement with measured results for Viking 

1, 91.04 % in agreement for VL-2.   

 

Annex D displays our attempt to 

predict pressure on what is basically an 

hourly frequency (actually once per time-bin, 

with each time-bin equal to about 59 minutes) 

for Viking 1 sols 1 to 116 and 134 to 350. 

While previous researchers focused on 

diurnal pressure cycles, Annex D focuses on 

the percent differences between pressures 

measured and pressures predicted based on 

heat being applied by RTGs when 

temperatures fell. There was a distinct pattern 

seen, often as clear as what one would see 

when looking at a healthy electrocardiogram.  

Pressures would vary ï sometimes by up to 

26% from the predicted value, and then settle 

back to almost 0 percent difference, always at 

the same time of day for long periods of time.   

 

Annex D is voluminous, providing all 

temperature and pressure data available for 

Viking 1. Each page has the 25 time bins for 

one sol on the left side and for another sol on 

the right. Appendix 1 to Annex D has data for 

VL-1 sols 1 to 91 on the left; and sols 92 to 

116 plus 134 to 199 on the right. Appendix 2 

to Annex D has data for VL-1 sols1 to 200 to 

274 on the left, then for sols 275 to 350 on the 

right. When the percent difference is less than 

2%, the data is shown in red bold fonts.   

 

Annex E just singles out the percent 

differences seen for the .3 and .34 time bins 

over VL-1 sols 200 to 350. This (generally 

around sunrise time) is one of the times when 

it would be reasonable to expect heat from the 

RTGs to access equipment (like cameras) 

that need to begin their daily operations.  The 

average percent difference was 2.67%. Of the 

302 pressure predictions made, 72 had a 

percent difference of less than 2%. See Table 

2 and Figure 8 for further details. 

 

 
Table 2: Viking 1 cyclic accuracies for pressure predictions.  See Figure 8 and Annex F for further 

details. The data source was the Viking Project site at http://www-

k12.atmos.washington.edu/k12/resources/mars_data-information/data.html. 

http://www-k12.atmos.washington.edu/k12/resources/mars_data-information/data.html
http://www-k12.atmos.washington.edu/k12/resources/mars_data-information/data.html
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Figure 7: Viking 1 cyclic accuracies for pressure predictions. See Annex F for further details. The 

data source was the Viking Project site at http://www-

k12.atmos.washington.edu/k12/resources/mars_data-information/data.html. 

 

Annex F focuses just on time-bins 

that have a percent difference between 

measured and predicted pressures that is 

under 2%. It makes clear that gradually the 

time of the greatest percent difference 

agreement would shift by a time-bin. For 

example, there is a better than 2% difference 

agreement at the 0.3 time-bins starting at VL-

1 Sol 211 continuing until VL-1 sol 288, a 78-

day run. The agreement was at the next later 

time-bin (0.34) for sols 205 to 210 just before 

the long run, and the agreement switches 

back and forth between these two time bins 

until sol 299.  Then the agreement moves the 

0.38 time bin as Viking 1 experiences the first 

day of winter at its Sol 306.   

There is a similar run of small percent 

differences in the middle of the night. For 

example, in the 0.1 time-bin between Sols 

255 and 350, there were only nine times that 

the percent difference was 2% or more. 

Likewise, the percent difference was (except 

for once) always under 2% in at least one of 

the two time-bins labeled as 0.66 and 0.7 

(early evening) between sols 200 and 240.  

Where pressures drift away from the 2% 

standard, it is believed that the RTGs were 

not permitted to transfer heat to the 

transducers and heat was slowly lost to the 

frigid outside. Figure 8 is a sample of Annex 

F (sols 228 to 250). 

 

 

 

 

http://www-k12.atmos.washington.edu/k12/resources/mars_data-information/data.html
http://www-k12.atmos.washington.edu/k12/resources/mars_data-information/data.html
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Figure 8 ï Sample of Annex F showing the times of day (for sols 228 through 250) when 

pressure predictions had less than a 2% difference from measured pressures at Viking 1. 

The formula used assumes that the pressure transducer is no longer in contact with 

the ambient atmosphere on Mars. 
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Most striking is what happens in a 

close examination of graphs that sum up 

Viking-2 sol averaged temperatures and 

pressures.  Figure 9A and 9C show that as 

temperatures fell, often pressures rose. To 

counter falling temperatures, RTG heat is 

allowed to access the lander interior to 

maintain temperature stability there. As this 

occurs, air trapped behind any dust clot 

would experience a pressure increase.  When 

the Figure 9C graph is inverted and displayed 

as Figure 9B, the temperature and pressure 

graphs are nearly an exact match.  The 

biggest discrepancy is after a hiatus with no 

data between Viking 2 sols 560 to 633 (Ls 68 

to 100 in Martian spring to summer). VL-2 

pressure readings were often stuck for 10 

hours to six days (see Annex C for VL-2 sols 

639-799). When pressures were stuck, 

temperatures were not.  

 

 

 
 

 

 Figure 9A to 9C: Graphs shown as Figure 9A and 9C are redrawn from Tillman 

and Johnson. Figure 9B inverts the direction of temperatures on the Y axis to show how 

heating by RTGs to counter increasing cold outside produces a curve very similar to the 

pressure curve. 

 

 


