Chapter 17 - Comparative Space Power Baselines

HOME PAGE Web Site Contents Mars Report Contents Mars Report Abstract CV for Dr. David Roffman Diplomas PhD Thesis PhD Thesis Powerpoint Mars PowerPoint MSL Weather Reports MSL Weather Fall Yr 3 MSL Yr. 3 Summer Weather MSL Yr. 3 Spring Weather MSL Ultraviolet Desai, EDL, Parachutes & ExoMars Mars winter vs. summer temps Sea at Utopia Planitia, Mars Tree Stump at MSL? Spherical life on Mars? Mars Report Abstract, 1-1.2 Mars Report Sec.2-2.1 Report 2.2-2.4 Report 2.5-2.5.2 Report 2.5.3-2.7 Report 3-4.1.2 Report 5 to 6 Report  7-7.2.1 Report 8-9 Report 10-11 Report  12-12.2 Report 12.3-12.5 Report 12.6 Report 13-14 Report 14.1 Report 14.2-14.3 Report 14.4-14.6.2 Report 14.6.3-14.6.4 Report 15-19 Report References Report Afterword Rebuttal of REMS Report Running water on Mars MSL Year 0 Weather MSL Yr 2 Winter-Spring Weather MSL Yr 2 Summer Weather MSL Yr 2 Fall Weather MSL Yr 2-3 Winter Weather Adiabatics MSL Hi Temps MSL Low Temps Organic Chem found by MSL Oxygen in Mars Air MSL Day length & Temp Warm winter ground temps 155-Mile High Mars Plume Radiation Diurnal Air Temp Variation Mars Temps Fahrenheit Beagle found JPL/NASA Pressure Mistakes Enter MarsCorrect Sol 370, 1160 & 1161 Histories Mars-Radio-Show JPL Fudges Pressure Curves MSL Temp. ∆ Mast to Ground High & Low Pressures Normalized Mars soil 2% water Moving rock Mars MAVEN MSL Relative Humidity Claim Ashima Concedes Original MSL Weather Record Old MSL Weather Record MSL Summer Weather Pressure Estimate REMS Wind MSL Pressures REMS Reports Curiosity Geology CERN-2013-pics Daylight Math MSL Errors P1 MSL Errors P2 MSL-Chute-Flap MSL daylight Ashima Sols 15 to 111 Ashima Sol 112 to 226 Ashima Sol 227 on New Ashima Sols 270+ MSL Summer to Sol 316 Updated Secrets of Mars Weather Forecast Wind Booms MSL Credibility MSL Temp. Swings MSL Temperatures Sample Analysis at Mars (SAM) VL2 - MSL Ls Comparson Ashima MIT Mars GCM Dust Storm Nonsense Mars Slideshow Moving Sand & Martian Wind 3 DEC12 Press Conf. MSL Press Conf. 15NOV2012 Sol Numbering MSL Pressure Graph to Ls 218.8 MSL Sky Color Mars Sky Color DATA DEBATE! Zubrin's Letter Phoenix Vaisala Vaisala Pressure Sensors Phoenix &MSL Flawed MSL REMS Viking pressure sensors failed MSL landing site Mars Landings Phobos Grunt Martian Air Supersaturation Mars & CH4 Mars and MSL Time Viking Pressure Audit Links Mars Society 2008 Quant Finance Frontiers Home Front. Preface Frontiers Ch. 1 Frontiers Ch. 2 Antimatter Lightning Frontiers Ch. 3 Frontiers Ch. 4 Frontiers Ch. 5 Frontiers Ch. 6 Frontiers Ch. 7 Frontiers Ch. 8 Frontiers Ch. 9 Frontiers Ch 10 Frontiers Ch 11 Frontiers Ch 12 Frontiers Ch 13 Frontiers Ch 14 Frontiers Ch 15 Frontiers Ch 16 Frontiers Ch 17 Frontiers Ch 18 Frontiers Ch 19 Frontiers Ch 20 Frontiers Ch 21 Frontiers Ch 22 World Tour Spring-Break -13 Other Travels Asteroid Impact? ExoMars data Unit Issues Viking Pressures Tavis CADs Landing Long Scale Heights LS of Max/Min Pressures Tavis Report Tavis Failures Lander Altitude Martian Trees? Code Experiment Gedanken Report Mars Nuke? Martian Flares Mach Numbers MOLA (altitude) Original Mars Report Mariner 9 & Pressure Mars  Temps MSL Time MPF Pressure Blog Debates Spring Pendulum Plasma Model Reporting Errors Orbital Parameters Anderson Localization P. 1 Anderson Localization P. 2 Moving rock old Navigating Mars Mars Report Section Links Mars Report Figure Link Gillespie Lake rock outcrop MSL Sol 200 Anomaly Sol 1300&1301 Anomalies Gilbert Levin & Labeled Release Brine on Mars Ceres Lights Yr 1 Table 1 amfivan Missing data Mitchell Report Old Mars Report All MPF Temps ExoMars fails Did Spirit find past life? MSL ground temps go haywire Seasonal Pressure Altitude Calculations

Notes by David A Roffman on Chapter 17 of

FRONTIERS IN PROPULSION SCIENCE

Chapter by Gary L. Bennett,

Director, Metaspace Enterprises, Emmett, Idaho

 

     This chapter discusses spaceship power sources and energy storage options.  We mostly use chemical approaches to space travel.  However, there are ways to improve.  Free radical propulsion utilizes neutral atomic fragments produced by dissociation of molecules.  Another version of propulsion is metastable, which has excited atoms or molecules with a radiative lifetime of more than a microsecond.  Multiple kinds of propulsion systems may be needed for a long mission.  There is a proposal to use the sun as a slingshot for extra-solar missions.

      A common space power system employs solar panels.  NASA has the goal of increasing solar panel efficiency.  Solar panels will not work well at distances past Mars.  Panels around Jupiter would have to be 25 times bigger to work the same as they do around Earth.  For the Dwarf planet Pluto, they would have to be over 1500 times as large.

     Considering temperature, radiation fields, and light are important.  Batteries can help for short term power boosts, while rechargeable ones are weaker and steadier.  Radioisotope power relies on converting heat into electrical energy, via a nuclear reaction.  Nuclear power has been used in space for quite some time including in the first military GPS satellites, weather satellites, Apollo lunar data collectors, voyagers, the Mars rovers, and Galileo.  Some of these reactors were so great that they lasted decades after they should have stopped working.

    The New Horizons mission is currently on route to Pluto, and uses nuclear power.  Its mission will rely on this power source all the way up to certain parts of the Kuiper Belt.  Nuclear power has been used for decades (since the 60’s in space), and will continue to be used for probes to explore our solar system (and perhaps beyond that).  For the record, the first nuclear reactor in space was for the SNAP-10A in 1965. 

     When spacecraft do fail, a significant amount of malfunctions are due to other system errors, not power shortage.  America wasn’t the only country to have used fission power.  The former Soviet Union launched perhaps as many as 33 space craft using this power source (31 have been confirmed).  For nuclear propulsion, the standard proposed method is to heat hydrogen gas (using the nuclear reactor) and shoot it out the back end of the craft.

     Nuclear propulsion promises to be between two to three times faster than chemical propulsion, although materials may limit its efficiency.  There are a variety of designs, but those were discussed in earlier chapters.  While fusion and antimatter processes are best for space travel, they are currently out of reach.  A  common misconception is that rockets push against something to move.  In reality Newton's 2nd Law is F = dp/dt = dV/dt + Vexhaust*dm/dt.  Rockets move because of the change in the mass of the rocket due to the exhaust velocity of the propellant.