Chapter 1 - Recent History of Breakthrough Propulsion Studies

HOME PAGE Web Site Contents Mars Report Contents Mars Report Abstract CV for Dr. David Roffman Diplomas PhD Thesis PhD Thesis Powerpoint Mars PowerPoint MSL Weather Reports Base on Mars? Seasonal Pressure Altitude Calculations Seismic Activity on Mars? Perserverance Weather Data MSL Years 5-6 Winter MSL Year 5 FALL MSL Year 5 Summer MSL Year 5 Spring MSL Years 4-5 Winter MSL Year 4 FALL MSL Year 4 Summer Weather MSL Year 4 Spring Weather MSL Yr 3-4 Winter Weather MSL Fall Yr 3 Weather MSL Yr. 3 Summer Weather MSL Yr. 3 Spring Weather Martian plume March 25 2017 MSL Ultraviolet 3 YEARS OF MSL UV Desai, EDL, Parachutes & ExoMars Mars winter vs. summer temps Helo to Mars Sea at Utopia Planitia, Mars Tree Stump at MSL? Spherical life on Mars? Mars Report Abstract, 1-1.2 Mars Report Sec.2-2.1 Report 2.2-2.4 Report 2.5-2.5.2 Report 2.5.3-2.7 Report 3-4 Report 4.1-4.1.2 Report 5 to 6 Report  7-7.2.1 Report 8 Report 9 Report 10 Report 11 Global Dust Storm Report 12 Report  13-13.2 Report 13.3-13.5 Report 13.6 Report 14-15 Report 15.1 Report 15.2-15.3 Report 15.4-15.6.2 Report - Report Report 16-16.1 Report 17-20 Report References Rebuttal of REMS Report Running water on Mars MSL Year 0 Weather MSL Yr 2 Winter-Spring Weather MSL Yr 2 Summer Weather MSL Yr 2 Fall Weather MSL Yr 2-3 Winter Weather Adiabatics MSL Hi Temps MSL Low Temps Organic Chem found by MSL Oxygen in Mars Air MSL Day length & Temp Warm winter ground temps 155-Mile High Mars Plume Radiation Diurnal Air Temp Variation Mars Temps Fahrenheit Beagle found JPL/NASA Pressure Mistakes Enter MarsCorrect Sol 370, 1160 & 1161 Histories Mars-Radio-Show JPL Fudges Pressure Curves MSL Temp. ∆ Mast to Ground High & Low Pressures Normalized Mars soil 2% water Moving rock Mars MAVEN MSL Relative Humidity Claim Ashima Concedes Original MSL Weather Record Old MSL Weather Record MSL Summer Weather Pressure Estimate REMS Wind MSL Pressures REMS Reports Curiosity Geology CERN-2013-pics Daylight Math MSL Errors P1 MSL Errors P2 MSL-Chute-Flap MSL daylight Ashima Sols 15 to 111 Ashima Sol 112 to 226 Ashima Sol 227 on New Ashima Sols 270+ MSL Summer to Sol 316 Updated Secrets of Mars Weather Forecast Wind Booms MSL Credibility MSL Temp. Swings MSL Temperatures Sample Analysis at Mars (SAM) VL2 - MSL Ls Comparson Ashima MIT Mars GCM Dust Storm Nonsense Mars Slideshow Moving Sand & Martian Wind 3 DEC12 Press Conf. MSL Press Conf. 15NOV2012 Sol Numbering MSL Pressure Graph to Ls 218.8 MSL Sky Color Mars Sky Color DATA DEBATE! Zubrin's Letter Phoenix Vaisala Vaisala Pressure Sensors Phoenix &MSL Flawed MSL REMS Viking pressure sensors failed MSL landing site Mars Landings Phobos Grunt Martian Air Supersaturation Mars & CH4 Mars and MSL Time Viking Pressure Audit Links Mars Society 2008 Quant Finance Frontiers Home Front. Preface Frontiers Ch. 1 Frontiers Ch. 2 Antimatter Lightning Frontiers Ch. 3 Frontiers Ch. 4 Frontiers Ch. 5 Frontiers Ch. 6 Frontiers Ch. 7 Frontiers Ch. 8 Frontiers Ch. 9 Frontiers Ch 10 Frontiers Ch 11 Frontiers Ch 12 Frontiers Ch 13 Frontiers Ch 14 Frontiers Ch 15 Frontiers Ch 16 Frontiers Ch 17 Frontiers Ch 18 Frontiers Ch 19 Frontiers Ch 20 Frontiers Ch 21 Frontiers Ch 22 World Tour Spring-Break -13 Other Travels Asteroid Impact? ExoMars data Unit Issues Viking Pressures Tavis CADs Landing Long Scale Heights LS of Max/Min Pressures Tavis Report Tavis Failures Lander Altitude Martian Trees? Code Experiment Gedanken Report Mars Nuke? Martian Flares Mach Numbers MOLA (altitude) Original Mars Report Mariner 9 & Pressure Mars  Temps MSL Time MPF Pressure Blog Debates Spring Pendulum Plasma Model Reporting Errors Orbital Parameters Anderson Localization P. 1 Anderson Localization P. 2 Moving rock old Navigating Mars Mars Report Section Links Mars Report Figure Link Gillespie Lake rock outcrop MSL Sol 200 Anomaly Sol 1300&1301 Anomalies Gilbert Levin & Labeled Release Brine on Mars Ceres Lights Yr 1 Table 1 Missing data Mitchell Report Old Mars Report All MPF Temps ExoMars fails Did Spirit find past life? MSL ground temps go haywire OPACITY AT MSL Luminescence on Mars Dust Storms & Microorganisms 2018 Global Dust Storm Links to Sections of the Basic Report

Updated 1/9/2011


Notes by David A. Roffman on Chapter 1 of


(Chapter by Paul A. Gilster of the Tau Zero Foundation)


      The revolutionary field of Breakthrough Propulsion Physics is dedicated to advancing our knowledge of theoretical propulsion science and novel power sources.  It entertains ideas from warp drives to the Quantum Vacuum.  For the time being, this new discipline is relatively underfunded and has scattered scientists that may or may not share work.  Those who do not share are somewhat of a burden to the whole because they force others to reinvent the wheel and drain limited research funds.  However, the “think-tank” has persevered in the face of budget crises, and has skillfully used its limited funds to test (and, as of February 2009 when this book was published) mostly disprove ideas posted by many other researchers.

      The textbook covers a multitude of propulsion proposals, including Space Drive, Wormholes, Faster than Light Travel (FTL), Anti-Gravity, Warp Drive, Zero Point Energy (ZPE), and so forth.  In order to define some of the terms, the Space Drive entails a propulsion device that relies on the use of indigenous matter as a power source for motion.  However, since the hydrogen and other gases in interstellar space are relatively scarce, this idea may not have merit, unless the Quantum Vacuum is tapped.  The vacuum of space is not at all empty.  In fact, scientists wish to procure a variety of exotic particles and unusual “matter” from this un-voidly void.  Particle creation is given by the uncertainty principle: ΔE*Δt > (h-bar)/2.  This version is the energy-time uncertainty principle.  It allows for the creation of a particle of a specified energy for a specified amount of time.  Since h-bar (Planck’s constant divided by 2Pi) is so small (~10-34 in SI units), large amounts of energy are only available for a very short time; plug in numbers to see what happens. 

      The hopeful prospect in the vacuum is ZPE.  This is the lowest allowable energy state allowable.  Currently, it can be drawn from the vacuum and used as an inefficient power source via the Casmir Effect - what happens when two charged plates are placed in extremely close proximity, and ZPE is drawn through.  Currently, the whole idea of the vacuum as a power source is listed as nonviable, but more testing is needed. 

      Another bizarre quantum idea is quantum tunneling.  This uses a wormhole to travel faster than light in terms of distance traveled in a given unit of time (not the actual speed of the wave/particle in question).  Tunneling is also deemed to be nonviable by the textbook, because only huge wavelengths (allegedly too large to effectively carry information) can be passed through the “vortex.”  Look at the energy-time uncertainty principle and the fact that E = h*c/λ.  Larger wavelengths mean less energy, meaning more time is allowed to perhaps send a signal.    Once again though, more testing is needed to see if this path leads to a dead end.

      To date, there have been several attempts to research the field of Breakthrough Propulsion Physics, including: Vision-21, the Breakthrough Propulsion Physics Project (NASA based), Project Greenglow, ESA’s General Studies Program and Advanced Concepts Team, etc.  NASA’s work had a total of 1.6 million dollars to fund their research over a seven year period.  But given that small amount of money, it is doubtful that the funds paid for more than the AC bill.  The program was eventually cut, and thus, went nowhere (except, perhaps, for disproving Podkletnov and his Gravity Shield claims amongst others).




       "The coupling of electromagnetism, gravity, and spacetime," according to Gilster, "offers ground for continuing interest."  This raised questions about Eugene Podkletnov's claims which will be discussed in my review of Chapter 5. Martin Tajmar and his associates used a spinning superconductor ring to detect what looked like a frame dragging force that was much stronger than theory would have predicted.  Such effects show up below a critical temperature for a number of materials including a nonsuperconducting ring of aluminum.