Chapter 19 - Investigating Sonoluminescence as a Means of Energy Harvesting

HOME PAGE Web Site Contents Mars Report Contents Mars Report Abstract CV for Dr. David Roffman Diplomas PhD Thesis PhD Thesis Powerpoint Mars PowerPoint MSL Weather Reports MSL Weather Fall Yr 3 MSL Yr. 3 Summer Weather MSL Yr. 3 Spring Weather MSL Ultraviolet Desai, EDL, Parachutes & ExoMars Mars winter vs. summer temps Sea at Utopia Planitia, Mars Tree Stump at MSL? Spherical life on Mars? Mars Report Abstract, 1-1.2 Mars Report Sec.2-2.1 Report 2.2-2.4 Report 2.5-2.5.2 Report 2.5.3-2.7 Report 3-4.1.2 Report 5 to 6 Report  7-7.2.1 Report 8-9 Report 10-11 Report  12-12.2 Report 12.3-12.5 Report 12.6 Report 13-14 Report 14.1 Report 14.2-14.3 Report 14.4-14.6.2 Report 14.6.3-14.6.4 Report 15-19 Report References Report Afterword Rebuttal of REMS Report Running water on Mars MSL Year 0 Weather MSL Yr 2 Winter-Spring Weather MSL Yr 2 Summer Weather MSL Yr 2 Fall Weather MSL Yr 2-3 Winter Weather Adiabatics MSL Hi Temps MSL Low Temps Organic Chem found by MSL Oxygen in Mars Air MSL Day length & Temp Warm winter ground temps 155-Mile High Mars Plume Radiation Diurnal Air Temp Variation Mars Temps Fahrenheit Beagle found JPL/NASA Pressure Mistakes Enter MarsCorrect Sol 370, 1160 & 1161 Histories Mars-Radio-Show JPL Fudges Pressure Curves MSL Temp. ∆ Mast to Ground High & Low Pressures Normalized Mars soil 2% water Moving rock Mars MAVEN MSL Relative Humidity Claim Ashima Concedes Original MSL Weather Record Old MSL Weather Record MSL Summer Weather Pressure Estimate REMS Wind MSL Pressures REMS Reports Curiosity Geology CERN-2013-pics Daylight Math MSL Errors P1 MSL Errors P2 MSL-Chute-Flap MSL daylight Ashima Sols 15 to 111 Ashima Sol 112 to 226 Ashima Sol 227 on New Ashima Sols 270+ MSL Summer to Sol 316 Updated Secrets of Mars Weather Forecast Wind Booms MSL Credibility MSL Temp. Swings MSL Temperatures Sample Analysis at Mars (SAM) VL2 - MSL Ls Comparson Ashima MIT Mars GCM Dust Storm Nonsense Mars Slideshow Moving Sand & Martian Wind 3 DEC12 Press Conf. MSL Press Conf. 15NOV2012 Sol Numbering MSL Pressure Graph to Ls 218.8 MSL Sky Color Mars Sky Color DATA DEBATE! Zubrin's Letter Phoenix Vaisala Vaisala Pressure Sensors Phoenix &MSL Flawed MSL REMS Viking pressure sensors failed MSL landing site Mars Landings Phobos Grunt Martian Air Supersaturation Mars & CH4 Mars and MSL Time Viking Pressure Audit Links Mars Society 2008 Quant Finance Frontiers Home Front. Preface Frontiers Ch. 1 Frontiers Ch. 2 Antimatter Lightning Frontiers Ch. 3 Frontiers Ch. 4 Frontiers Ch. 5 Frontiers Ch. 6 Frontiers Ch. 7 Frontiers Ch. 8 Frontiers Ch. 9 Frontiers Ch 10 Frontiers Ch 11 Frontiers Ch 12 Frontiers Ch 13 Frontiers Ch 14 Frontiers Ch 15 Frontiers Ch 16 Frontiers Ch 17 Frontiers Ch 18 Frontiers Ch 19 Frontiers Ch 20 Frontiers Ch 21 Frontiers Ch 22 World Tour Spring-Break -13 Other Travels Asteroid Impact? ExoMars data Unit Issues Viking Pressures Tavis CADs Landing Long Scale Heights LS of Max/Min Pressures Tavis Report Tavis Failures Lander Altitude Martian Trees? Code Experiment Gedanken Report Mars Nuke? Martian Flares Mach Numbers MOLA (altitude) Original Mars Report Mariner 9 & Pressure Mars  Temps MSL Time MPF Pressure Blog Debates Spring Pendulum Plasma Model Reporting Errors Orbital Parameters Anderson Localization P. 1 Anderson Localization P. 2 Moving rock old Navigating Mars Mars Report Section Links Mars Report Figure Link Gillespie Lake rock outcrop MSL Sol 200 Anomaly Sol 1300&1301 Anomalies Gilbert Levin & Labeled Release Brine on Mars Ceres Lights Yr 1 Table 1 amfivan Missing data Mitchell Report Old Mars Report All MPF Temps ExoMars fails Did Spirit find past life? MSL ground temps go haywire Seasonal Pressure Altitude Calculations


Chapter 19 -Investigating Sonoluminescence as a Means of Energy Harvesting


                                       Notes by David A Roffman on Chapter 19 of


Chapter by John D. Wrbanek, Gustave C. Fralick, Susan Y. Wrbanek, and Nancy R. Hill

NASA Glenn Research Center, Cleveland, Ohio


   Sonoluminescence uses sound to create light in cavitations fluids.  This process also generates bubbles that can produce temperatures higher than thousands of degrees (Celsius).  A spherical collapse of a bubble could have a peak release temperature of 3 X 108 K.  The bubbling heat/light flashes were discovered in the 1930s during sonar research.  A possible model for sonoluminescence is a two stage plasma bubble in which there is a low-density halo, and a high-density core.

    It may be that fusion can be achieved through sonoluminescence.  The heat associated with the process may be enough, although fusion has yet to be observed.  However, it has been noted that different liquids produce varying temperature bubbles.  Some have projected that temperatures of one million Kelvin can occur in acetone, whereas only half a million Kelvin is projected for water.  Deuterium in water (heavy water) typically results in better bangs from sonoluminescence.

    Taleyarkhan’s group has recorded neutron and gamma ray flux.  These results have been confirmed by others, although there is not enough evidence to say that nuclear reactions are taking place.  To be effective for power generation, devices need to be compactable.  Calculations in the book show that the minimal cell size is 4.6mm in diameter.

    NASA has launched broad ranging experiments to study sonoluminescence.  One of their tests confirmed that brightness increases by 20% in 0 g.  Standard equipment is: flask containing liquid, ultrasonic transducers, piezoceramic amplifier, and a generator.  If the gas is not saturated in the liquid, then a single bubble is produced.  However, if the gas is saturated, then multiple bubbles are produced.

     For experiments with varying flask sizes, the smaller sized containers worked best.  This may be because there was less opportunity for dissipation.  As for the experiments with water versus heavy water, heavy water was needed to observe what is described in the next paragraph.

     Plates that combined different materials were used in the experiment.  Through zooming in, it became apparent that some metals fused over the course of the experiment.  Temperatures required for this welding were around several thousand Kelvin.  This cannot be acquiesced with certainty (that temperature was the cause).

     In the case of fusion, it is necessary to find its products.  Scintillation detectors may be used to find the products of a fusion reaction.  To make use of energy produced, it is a good idea to transform thermal energy into electrical energy.  A heat gradient can produce electricity via the Seebeck coefficient.  Thermoelectric power has been used in space missions.  The hot side uses radioisotope generators, while the cold side is space.

      NASA is currently researching film ceramic thermocouples for hot environments.  There needs to be a way to reduce resistance in order for a device to work, as each individual unit (as shown in the book) loses a lot of power to it.  Despite successes with some applications of sonoluminescence, there is still much to be learned.  NASA and (more likely) other organizations will continue to study this curious concept.