ANALYSIS OF MSL WATER IN SOIL ANNOUNCEMENT

HOME PAGE Web Site Contents Mars Report Contents Mars Report Abstract CV for Dr. David Roffman Diplomas PhD Thesis PhD Thesis Powerpoint Mars PowerPoint MSL Weather Reports MSL Weather Fall Yr 3 MSL Yr. 3 Summer Weather MSL Yr. 3 Spring Weather Martian plume March 25 2017 MSL Ultraviolet Desai, EDL, Parachutes & ExoMars Mars winter vs. summer temps Sea at Utopia Planitia, Mars Tree Stump at MSL? Spherical life on Mars? Mars Report Abstract, 1-1.2 Mars Report Sec.2-2.1 Report 2.2-2.4 Report 2.5-2.5.2 Report 2.5.3-2.7 Report 3-4.1.2 Report 5 to 6 Report  7-7.2.1 Report 8 Report 9 Report 10-11 Report  12-12.2 Report 12.3-12.5 Report 12.6 Report 13-14 Report 14.1 Report 14.2-14.3 Report 14.4-14.6.2 Report 14.6.3-14.7 Report 15-19 Report References Report Afterword Rebuttal of REMS Report Running water on Mars MSL Year 0 Weather MSL Yr 2 Winter-Spring Weather MSL Yr 2 Summer Weather MSL Yr 2 Fall Weather MSL Yr 2-3 Winter Weather Adiabatics MSL Hi Temps MSL Low Temps Organic Chem found by MSL Oxygen in Mars Air MSL Day length & Temp Warm winter ground temps 155-Mile High Mars Plume Radiation Diurnal Air Temp Variation Mars Temps Fahrenheit Beagle found JPL/NASA Pressure Mistakes Enter MarsCorrect Sol 370, 1160 & 1161 Histories Mars-Radio-Show JPL Fudges Pressure Curves MSL Temp. ∆ Mast to Ground High & Low Pressures Normalized Mars soil 2% water Moving rock Mars MAVEN MSL Relative Humidity Claim Ashima Concedes Original MSL Weather Record Old MSL Weather Record MSL Summer Weather Pressure Estimate REMS Wind MSL Pressures REMS Reports Curiosity Geology CERN-2013-pics Daylight Math MSL Errors P1 MSL Errors P2 MSL-Chute-Flap MSL daylight Ashima Sols 15 to 111 Ashima Sol 112 to 226 Ashima Sol 227 on New Ashima Sols 270+ MSL Summer to Sol 316 Updated Secrets of Mars Weather Forecast Wind Booms MSL Credibility MSL Temp. Swings MSL Temperatures Sample Analysis at Mars (SAM) VL2 - MSL Ls Comparson Ashima MIT Mars GCM Dust Storm Nonsense Mars Slideshow Moving Sand & Martian Wind 3 DEC12 Press Conf. MSL Press Conf. 15NOV2012 Sol Numbering MSL Pressure Graph to Ls 218.8 MSL Sky Color Mars Sky Color DATA DEBATE! Zubrin's Letter Phoenix Vaisala Vaisala Pressure Sensors Phoenix &MSL Flawed MSL REMS Viking pressure sensors failed MSL landing site Mars Landings Phobos Grunt Martian Air Supersaturation Mars & CH4 Mars and MSL Time Viking Pressure Audit Links Mars Society 2008 Quant Finance Frontiers Home Front. Preface Frontiers Ch. 1 Frontiers Ch. 2 Antimatter Lightning Frontiers Ch. 3 Frontiers Ch. 4 Frontiers Ch. 5 Frontiers Ch. 6 Frontiers Ch. 7 Frontiers Ch. 8 Frontiers Ch. 9 Frontiers Ch 10 Frontiers Ch 11 Frontiers Ch 12 Frontiers Ch 13 Frontiers Ch 14 Frontiers Ch 15 Frontiers Ch 16 Frontiers Ch 17 Frontiers Ch 18 Frontiers Ch 19 Frontiers Ch 20 Frontiers Ch 21 Frontiers Ch 22 World Tour Spring-Break -13 Other Travels Asteroid Impact? ExoMars data Unit Issues Viking Pressures Tavis CADs Landing Long Scale Heights LS of Max/Min Pressures Tavis Report Tavis Failures Lander Altitude Martian Trees? Code Experiment Gedanken Report Mars Nuke? Martian Flares Mach Numbers MOLA (altitude) Original Mars Report Mariner 9 & Pressure Mars  Temps MSL Time MPF Pressure Blog Debates Spring Pendulum Plasma Model Reporting Errors Orbital Parameters Anderson Localization P. 1 Anderson Localization P. 2 Moving rock old Navigating Mars Mars Report Section Links Mars Report Figure Link Gillespie Lake rock outcrop MSL Sol 200 Anomaly Sol 1300&1301 Anomalies Gilbert Levin & Labeled Release Brine on Mars Ceres Lights Yr 1 Table 1 amfivan Missing data Mitchell Report Old Mars Report All MPF Temps ExoMars fails Did Spirit find past life? MSL ground temps go haywire Seasonal Pressure Altitude Calculations OPACITY AT MSL

Updated 11/3/2013

On September 26, 2013, JPL announced that the MSL Rover Curiosty had found that Martian soil at Gale Crater was 2% water, meaning that there are 2 pints of water in every cubic foot of soil. The full article is below. Any comments by FoxNews.Com will be shown in blue bold fonts with our questions in red bold fonts.

Figure 1: High-Resolution Self-Portrait by Curiosity Rover Arm Camera On Sol 84 (Oct. 31, 2012), NASA's Curiosity rover used the Mars Hand Lens Imager (MAHLI) to capture this set of 55 high-resolution images, which were stitched together to create this full-color self-portrait.

Science Gains From Diverse Landing Area of Curiosity

PASADENA, Calif. -- NASA's Curiosity rover is revealing a great deal about Mars, from long-ago processes in its interior to the current interaction between the Martian surface and atmosphere.

Examination of loose rocks, sand and dust has provided new understanding of the local and global processes on Mars. Analysis of observations and measurements by the rover's science instruments during the first four months after the August 2012 landing are detailed in five reports in the Sept. 27 edition of the journal Science.

A key finding is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles' weight at Gale Crater where Curiosity landed. This result has global implications, because these materials are likely distributed around the Red Planet.

On this point FoxNews.Com had the following coverage:

NASA's Mars rover Curiosity has found that surface soil on the Red Planet contains about 2 percent water by weight. That means astronaut pioneers could extract roughly 2 pints of water out of every cubic foot of Martian dirt they dig up, said study lead author Laurie Leshin, of Rensselaer Polytechnic Institute in Troy, N.Y.

"For me, that was a big 'wow' moment," Leshin told SPACE.com. "I was really happy when we saw that there's easily accessible water here in the dirt beneath your feet. And it's probably true anywhere you go on Mars." [The Search for Water on Mars (Photos)http://global.fncstatic.com/static/v/all/img/external-link.png]

Dr. Leshon: You will continue to have wow moments until you realize Mars has higher pressure than NASA advertises. If it really had such low pressure as they say, the water near the surface should evaporate out of the top soil. By the way, note that the sky color is blue, not the butterscotch or red color that NASA insisted on ever since they altered the color of the sky as seen by Viking 1.

A link to a revolving Mars with hydrated mineral and other soil components is here: http://www.space.com/21404-mars-tale-of-fire-and-water-written-in-dust-video.html

The link above is from Space. Com. The article there are states that, "SAM also determined that the soil water is rich in deuterium, a "heavy" isotope of hydrogen that contains one neutron and one proton (as opposed to "normal" hydrogen atoms, which have no neutrons). The water in Mars' thin air sports a similar deuterium ratio, Leshin said. "That tells us that the dirt is acting like a bit of a sponge and absorbing water from the atmosphere," she said. The question here again is how she can be sure about which happened first. Is Mars really absorbing water from an atmosphere that is supposed to be almost a vacuum, or is the atmosphere filled with deuterium rich water that has not evaporated.

Curiosity also has completed the first comprehensive mineralogical analysis on another planet using a standard laboratory method for identifying minerals on Earth. The findings about both crystalline and non-crystalline components in soil provide clues to the planet's volcanic history.

Information about the evolution of the Martian crust and deeper regions within the planet comes from Curiosity's mineralogical analysis of a football-size igneous rock called "Jake M." Igneous rocks form by cooling molten material that originated well beneath the crust. The chemical compositions of the rocks can be used to infer the thermal, pressure and chemical conditions under which they crystallized.

"No other Martian rock is so similar to terrestrial igneous rocks," said Edward Stolper of the California Institute of Technology, lead author of a report about this analysis. "This is surprising because previously studied igneous rocks from Mars differ substantially from terrestrial rocks and from Jake M."

The other four reports include analysis of the composition and formation process of a windblown drift of sand and dust, by David Blake of NASA's Ames Research Center at Moffett Field, Calif., and co-authors.

Curiosity examined this drift, called Rocknest, with five instruments, preforming an onboard laboratory analysis of samples scooped up from the Martian surface. The drift has a complex history and includes sand particles with local origins, as well as finer particles that sample windblown Martian dust distributed regionally or even globally.

The rover is equipped with a laser instrument to determine material compositions from some distance away. This instrument found that the fine-particle component in the Rocknest drift matches the composition of windblown dust and contains water molecules. The rover tested 139 soil targets at Rocknest and elsewhere during the mission's first three months and detected hydrogen -- which scientists interpret as water -- every time the laser hit fine-particle material.

"The fine-grain component of the soil has a similar composition to the dust distributed all around Mars, and now we know more about its hydration and composition than ever before," said Pierre-Yves Meslin of the Institut de Recherche en Astrophysique et Planétologie in Toulouse, France, lead author of a report about the laser instrument results.

A laboratory inside Curiosity used X-rays to determine the composition of Rocknest samples. This technique, discovered in 1912, is a laboratory standard for mineral identification on Earth. The equipment was miniaturized to fit on the spacecraft that carried Curiosity to Mars, and this has yielded spinoff benefits for similar portable devices used on Earth. David Bish of Indiana University in Bloomington co-authored a report about how this technique was used and its results at Rocknest.

X-ray analysis not only identified 10 distinct minerals, but also found an unexpectedly large portion of the Rocknest composition is amorphous ingredients, rather than crystalline minerals. Amorphous materials, similar to glassy substances, are a component of some volcanic deposits on Earth.

Another laboratory instrument identified chemicals and isotopes in gases released by heating the Rocknest soil in a tiny oven. Isotopes are variants of the same element with different atomic weights. These tests found water makes up about 2 percent of the soil, and the water molecules are bound to the amorphous materials in the soil.

"The ratio of hydrogen isotopes in water released from baked samples of Rocknest soil indicates the water molecules attached to soil particles come from interaction with the modern atmosphere," said Laurie Leshin of Rensselaer Polytechnic Institute in Troy, N.Y., lead author of a report about analysis with the baking instrument.

Baking and analyzing the Rocknest sample also revealed a compound with chlorine and oxygen, likely chlorate or perchlorate, which previously was known to exist on Mars only at one high-latitude site. This finding at Curiosity's equatorial site suggests more global distribution.

Data obtained from Curiosity since the first four months of the rover's mission on Mars are still being analyzed. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, Calif., manages the mission for NASA's Science Mission Directorate in Washington. The mission draws upon international collaboration, including key instrument contributions from Canada, Spain, Russia and France.

For more information about the mission, visit http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl .

2013-291

Guy Webster  818-354-6278 
Jet Propulsion Laboratory, Pasadena, Calif.
guy.webster@jpl.nasa.gov

Dwayne Brown  202-358-1726 
NASA Headquarters, Washington
dwayne.c.brown@nasa.gov