Chapter 6 - Nonviable Mechanical “Antigravity” Devices

HOME PAGE Web Site Contents Mars Report Contents Mars Report Abstract CV for Dr. David Roffman Diplomas PhD Thesis PhD Thesis Powerpoint Mars PowerPoint MSL Weather Reports MSL Weather Fall Yr 3 MSL Yr. 3 Summer Weather MSL Yr. 3 Spring Weather MSL Ultraviolet Desai, EDL, Parachutes & ExoMars Mars winter vs. summer temps Sea at Utopia Planitia, Mars Tree Stump at MSL? Spherical life on Mars? Mars Report Abstract, 1-1.2 Mars Report Sec.2-2.1 Report 2.2-2.4 Report 2.5-2.5.2 Report 2.5.3-2.7 Report 3-4.1.2 Report 5 to 6 Report  7-7.2.1 Report 8-9 Report 10-11 Report  12-12.2 Report 12.3-12.5 Report 13-14 Report 14.1 Report 14.2-14.3 Report 14.4-14.6 Report 15-18 Report Afterword Report References Rebuttal of REMS Report Running water on Mars MSL Year 1 Weather MSL Yr 2 Winter-Spring Weather MSL Yr 2 Summer Weather MSL Yr 2 Fall Weather MSL Yr 2-3 Winter Weather Adiabatics MSL Hi Temps MSL Low Temps Organic Chem found by MSL Oxygen in Mars Air MSL Day length & Temp Warm winter ground temps 155-Mile High Mars Plume Radiation Diurnal Air Temp Variation Mars Temps Fahrenheit Beagle found JPL/NASA Pressure Mistakes Enter MarsCorrect Sol 370, 1160 & 1161 Histories Mars-Radio-Show JPL Fudges Pressure Curves MSL Temp. ∆ Mast to Ground High & Low Pressures Normalized Mars soil 2% water Moving rock Mars MAVEN MSL Relative Humidity Claim Ashima Concedes Original MSL Weather Record Old MSL Weather Record MSL Summer Weather Pressure Estimate REMS Wind MSL Pressures REMS Reports Curiosity Geology CERN-2013-pics Daylight Math MSL Errors P1 MSL Errors P2 MSL-Chute-Flap MSL daylight Ashima Sols 15 to 111 Ashima Sol 112 to 226 Ashima Sol 227 on New Ashima Sols 270+ MSL Summer to Sol 316 Weather Forecast Wind Booms MSL Credibility MSL Temp. Swings MSL Temperatures Sample Analysis at Mars (SAM) VL2 - MSL Ls Comparson Ashima MIT Mars GCM Dust Storm Nonsense Mars Slideshow Moving Sand & Martian Wind 3 DEC12 Press Conf. MSL Press Conf. 15NOV2012 Sol Numbering MSL Pressure Graph to Ls 218.8 MSL Sky Color Mars Sky Color DATA DEBATE! Zubrin's Letter Phoenix Vaisala Vaisala Pressure Sensors Phoenix &MSL Flawed MSL REMS Viking pressure sensors failed MSL landing site Mars Landings Phobos Grunt Martian Air Supersaturation Martian Secrets? Mars & CH4 Mars and MSL Time Viking Pressure Audit Links Mars Society 2008 Quant Finance Frontiers Home Front. Preface Frontiers Ch. 1 Frontiers Ch. 2 Antimatter Lightning Frontiers Ch. 3 Frontiers Ch. 4 Frontiers Ch. 5 Frontiers Ch. 6 Frontiers Ch. 7 Frontiers Ch. 8 Frontiers Ch. 9 Frontiers Ch 10 Frontiers Ch 11 Frontiers Ch 12 Frontiers Ch 13 Frontiers Ch 14 Frontiers Ch 15 Frontiers Ch 16 Frontiers Ch 17 Frontiers Ch 18 Frontiers Ch 19 Frontiers Ch 20 Frontiers Ch 21 Frontiers Ch 22 World Tour Spring-Break -13 Other Travels Asteroid Impact? ExoMars data Unit Issues Viking Pressures Tavis CADs Landing Long Scale Heights LS of Max/Min Pressures Tavis Report Tavis Failures Lander Altitude Martian Trees? Code Experiment Gedanken Report Mars Nuke? Martian Flares Mach Numbers MOLA (altitude) Original Mars Report Mariner 9 & Pressure Mars  Temps MSL Time MPF Pressure Blog Debates Spring Pendulum Plasma Model Reporting Errors Orbital Parameters Anderson Localization P. 1 Anderson Localization P. 2 Moving rock old Navigating Mars Mars Report Section Links Mars Report Figure Link Gillespie Lake rock outcrop MSL Sol 200 Anomaly Sol 1300&1301 Anomalies Gilbert Levin & Labeled Release Brine on Mars Ceres Lights Yr 1 Table 1 amfivan Missing data Mitchell Report Old Mars Report All MPF Temps ExoMars fails Did Spirit find past life? MSL ground temps go haywire Seasonal Pressure Altitude Calculations

Updated 2/10/2012

Notes by David A Roffman on Chapter 6 of


Chapter by Marc G. Millis, NASA Glenn Research Center, Cleveland, Ohio


     This chapter is about nonviable antigravity devices, and is the work of the U.S. Government.  The first of many archetypes is the oscillation thruster (see Figures 1 and 2 below).  It is a device that uses internal mass movement to create net thrust. 

     All drives have three primary components:

  • Chassis to support masses,
  • Cycler to move the masses in asymmetric motion, and
  • An energy source. 


       Such a device moves forward because the forward speed of the internal masses travels faster in one direction than the other.  This would seem to be a breakthrough (no propellant), but these devices require connection to the ground (hence propellant) to function.  If left to dwell in space, or to be used for upward motion, nothing special will happen (the device won’t work).  The device will move in jolts, as the friction of the ground will eventually overcome the vehicle (masses eventually stop moving forward faster).  Then the process starts anew.

   A simple test to disprove such a device is the pendulum test.  Simply put, a pendulum is over the device and turns the device on.  The pendulum should oscillate rather than stay pushed out.  If there is oscillation, then no net thrust is produced (as the pendulum would just oscillate like the device and not counteract gravity by staying in an unfavorable gravitational position).  It is important to have the device and power supply focused on the pendulum and for the pendulum to be tall.  The reasons are to avoid power cable annoyances and to reduce natural oscillation frequency to be less than the device (it also makes the lateral force more pronounced).  It must be a level pendulum so as not to yield false impressions due to the titling base of a simple pendulum.  For the same reason, an air track in not recommended.  An air track would also create an initial velocity that needs to be accounted for.  The “jerk” effect has been shown to baseless in claim.  It is important to have an open mind though.

    The next device is the gyroscopic antigravity device (see Figure 9 below). Examples such as Eric Laithwaite’s in 1973 do not demonstrate antigravity.  Devices like his lift are based on a change in the axis of the gyros.  They are completely dependent on an external gravitational field and their own torques.  A typical machine consists of gyros, a main spindle, and pivots.  In order to test such a device, it is necessary to measure the weights and not thrust of the machine (as there are none).    The suggested test is to place an on and off device on opposite sides on a scale, and to see if the scale tips (see Figure 11 below).  Note that there can be error here as fluctuations and oscillations exist.  A more realistic approach is to analyze all external forces acting on the antigravity device and then to search for anything that crosses the surface of the test subject that carries momentum.   

    Other false proposals include reaction/momentum wheels.  Any device, despite the claims, cannot change the position of the center of mass in a system.  Some have tried to use frame dragging effects, but with no real success.  It is important to note that this chapter was designed to show nonviable devices and not viable ones.

    Although patents were issued for the Linear oscillation thruster (see Figure 1 below, Patent 5,685,192) and Laithwaite propulsion system (see Figure 7, Patent 5,860,317), this does not mean that they do what they claim to do.  Oscillation thrusters are misinterpretations of differential friction.  Gyroscopic devices misinterpret torques as linear thrust.  In my opinion the only way to achieve antigravity is to use exotic matter and to actually observe gravitons to get a better understanding of gravity.

Note: There is no copyright on this chapter because it is a work of the U.S. Government.